Most students are already familiar with the three standard triangle congruence rules taught in school: SSS (Side-Side-Side), SAS (Side-Angle-Side), and ASA (Angle-Side-Angle). These form the foundation of geometry and are commonly seen in classroom exercises and exams, including the GCSE Mathematics syllabus.
But what happens when we encounter problems that don’t follow these standard patterns directly? Can we still prove triangle congruence using medians, altitudes, angle bisectors, or partial side information?
In this section, we explore a selection of challenging triangle congruence problems that require deeper reasoning and clever constructions. These problems go beyond the textbook basics and are perfect for students preparing for Olympiad-style questions, GCSE extensions, or anyone wanting to sharpen their proof skills.